Evolving Efficient Clustering Patterns in Liver Patient Data through Data Mining Techniques
نویسندگان
چکیده
Clustering is one of the most important research areas in the field of data mining. In simple words, clustering is a division of data into different groups. Data are grouped into clusters in such a way that data of the same group are similar and those in other groups are dissimilar. It aims to minimize intra-class similarity while to maximize interclass dissimilarity. Clustering is an unsupervised learning technique. Clustering is useful to obtain interesting patterns and structures from a large set of data. Clustering can be applied in many areas, such as marketing studies, DNA analysis, city planning, text mining, and web documents classification. Large datasets with many attributes make the task of clustering complex. Many methods have been developed to deal with these problems. In this paper, two well known partitioning based methods – k-means and k-medoids are compared over health data. This paper also proposes an improved k-means medoids clustering algorithm. The proposed algorithm is evaluated using the health dataset i.e Liver dataset and compare the results with other previous algorithms. The proposed algorithm is more effective in terms of computation time as compared to K means and K-medoids clustering algorithm. The algorithms under consideration, is evaluated with Rand Index, Jaccard Coefficient, Folkes and Mallows and Run Time as four metrics. Experimental results are obtained on WEKA, a data mining tool.
منابع مشابه
دادهکاوی بالینی: مروری بر تکنیکهای دادهکاوی در دیابت
Background: Provide a health care service to the patients with diabetes provides useful information that could be used to identify, treatment, following up and prevention of diabetes. Explore and investigation of large volumes of data requires effective and efficient methods for finding hiding patterns in the data. The use of various techniques of data mining in particular Classification and Fr...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملCUSTOMER CLUSTERING BASED ON FACTORS OF CUSTOMER LIFETIME VALUE WITH DATA MINING TECHNIQUE
Organizations have used Customer Lifetime Value (CLV) as an appropriate pattern to classify their customers. Data mining techniques have enabled organizations to analyze their customers’ behaviors more quantitatively. This research has been carried out to cluster customers based on factors of CLV model including length, recency, frequency, and monetary (LRFM) through data mining. Based on LRFM,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013